3.21.89 \(\int \frac {(d+e x)^m}{(a d e+(c d^2+a e^2) x+c d e x^2)^3} \, dx\) [2089]

Optimal. Leaf size=64 \[ \frac {e^2 (d+e x)^{-2+m} \, _2F_1\left (3,-2+m;-1+m;\frac {c d (d+e x)}{c d^2-a e^2}\right )}{\left (c d^2-a e^2\right )^3 (2-m)} \]

[Out]

e^2*(e*x+d)^(-2+m)*hypergeom([3, -2+m],[-1+m],c*d*(e*x+d)/(-a*e^2+c*d^2))/(-a*e^2+c*d^2)^3/(2-m)

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 64, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {640, 70} \begin {gather*} \frac {e^2 (d+e x)^{m-2} \, _2F_1\left (3,m-2;m-1;\frac {c d (d+e x)}{c d^2-a e^2}\right )}{(2-m) \left (c d^2-a e^2\right )^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^m/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^3,x]

[Out]

(e^2*(d + e*x)^(-2 + m)*Hypergeometric2F1[3, -2 + m, -1 + m, (c*d*(d + e*x))/(c*d^2 - a*e^2)])/((c*d^2 - a*e^2
)^3*(2 - m))

Rule 70

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(b*c - a*d)^n*((a + b*x)^(m + 1)/(b^(
n + 1)*(m + 1)))*Hypergeometric2F1[-n, m + 1, m + 2, (-d)*((a + b*x)/(b*c - a*d))], x] /; FreeQ[{a, b, c, d, m
}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] && IntegerQ[n]

Rule 640

Int[((d_) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[(d + e*x)^(m + p)*(a
/d + (c/e)*x)^p, x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&
 IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {(d+e x)^m}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^3} \, dx &=\int \frac {(d+e x)^{-3+m}}{(a e+c d x)^3} \, dx\\ &=\frac {e^2 (d+e x)^{-2+m} \, _2F_1\left (3,-2+m;-1+m;\frac {c d (d+e x)}{c d^2-a e^2}\right )}{\left (c d^2-a e^2\right )^3 (2-m)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.09, size = 63, normalized size = 0.98 \begin {gather*} \frac {e^2 (d+e x)^{-2+m} \, _2F_1\left (3,-2+m;-1+m;-\frac {c d (d+e x)}{-c d^2+a e^2}\right )}{\left (-c d^2+a e^2\right )^3 (-2+m)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^m/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^3,x]

[Out]

(e^2*(d + e*x)^(-2 + m)*Hypergeometric2F1[3, -2 + m, -1 + m, -((c*d*(d + e*x))/(-(c*d^2) + a*e^2))])/((-(c*d^2
) + a*e^2)^3*(-2 + m))

________________________________________________________________________________________

Maple [F]
time = 0.80, size = 0, normalized size = 0.00 \[\int \frac {\left (e x +d \right )^{m}}{\left (a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}\right )^{3}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^m/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^3,x)

[Out]

int((e*x+d)^m/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^3,x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^m/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^3,x, algorithm="maxima")

[Out]

integrate((x*e + d)^m/(c*d*x^2*e + a*d*e + (c*d^2 + a*e^2)*x)^3, x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^m/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^3,x, algorithm="fricas")

[Out]

integral((x*e + d)^m/(c^3*d^6*x^3 + a^3*x^3*e^6 + 3*(a^2*c*d^2*x^3 + (a^2*c*d*x^4 + a^3*d*x^2)*e)*e^4 + (c^3*d
^3*x^6 + 3*a*c^2*d^3*x^4 + 3*a^2*c*d^3*x^2 + a^3*d^3)*e^3 + 3*(c^3*d^4*x^5 + 2*a*c^2*d^4*x^3 + a^2*c*d^4*x)*e^
2 + 3*(a*c^2*d^4*x^3 + (a*c^2*d^2*x^5 + 2*a^2*c*d^2*x^3 + a^3*d^2*x)*e^2 + 2*(a*c^2*d^3*x^4 + a^2*c*d^3*x^2)*e
)*e^2 + 3*(c^3*d^5*x^4 + a*c^2*d^5*x^2)*e), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (d + e x\right )^{m}}{\left (d + e x\right )^{3} \left (a e + c d x\right )^{3}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**m/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**3,x)

[Out]

Integral((d + e*x)**m/((d + e*x)**3*(a*e + c*d*x)**3), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^m/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^3,x, algorithm="giac")

[Out]

integrate((x*e + d)^m/(c*d*x^2*e + a*d*e + (c*d^2 + a*e^2)*x)^3, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int \frac {{\left (d+e\,x\right )}^m}{{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^3} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x)^m/(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^3,x)

[Out]

int((d + e*x)^m/(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^3, x)

________________________________________________________________________________________